A comparative analysis of hotspot identification methods.

نویسنده

  • Alfonso Montella
چکیده

The identification of crash hotspots is the first step of the highway safety management process. Errors in hotspot identification may result in the inefficient use of resources for safety improvements and may reduce the global effectiveness of the safety management process. Despite the importance of using effective hotspot identification (HSID) methods, only a few researchers have compared the performance of various methods. In this research, seven commonly applied HSID methods were compared against four robust and informative quantitative evaluation criteria. The following HSID methods were compared: crash frequency (CF), equivalent property damage only (EPDO) crash frequency, crash rate (CR), proportion method (P), empirical Bayes estimate of total-crash frequency (EB), empirical Bayes estimate of severe-crash frequency (EBs), and potential for improvement (PFI). The HSID methods were compared using the site consistency test, the method consistency test, the total rank differences test, and the total score test. These tests evaluate each HSID method's performance in a variety of areas, such as efficiency in identifying sites that show consistently poor safety performance, reliability in identifying the same hotspots in subsequent time periods, and ranking consistency. To evaluate the HSID methods, five years of crash data from the Italian motorway A16 were used. The quantitative evaluation tests showed that the EB method performs better than the other HSID methods. Test results highlight that the EB method is the most consistent and reliable method for identifying priority investigation locations. The EB expected frequency of total-crashes (EB) performed better than the EB expected frequency of severe-crashes (EBs), although the results differed only slightly when the number of identified hotspots increased. The CF method performed better than other HSID methods with more appealing theoretical arguments. In particular, the CF method performed better than the CR method. This result is quite alarming, since many agencies use the CR method. The PFI and EPDO methods were largely inconsistent. The proportion method performed worst in all of the tests. Overall, these results are consistent with the results of previous studies. The identification of engineering countermeasures that may reduce crashes was successful in all of the hotspots identified with the EB method; this finding shows that the identified hotspots can also be corrected. The advantages associated with the EB method were based on crash data from one Italian motorway, and the relative performances of HSID methods may change when using other crash data. However, the study results are very significant and are consistent with earlier findings. To further clarify the benefits of the EB method, this study should be replicated in other countries. Nevertheless, the study results, combined with previous research results, strongly suggest that the EB method should be the standard in the identification of hotspots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of genetic resources of field resistance to barley leaf rust in local germplasm of cultivated barley

The barley leaf rust has been important in recent years in Iran. In order to identify the genetic resources of resistance to this disease, 207 Iranian barley landraces were studied. The germplasms were investigated at the field of Iraqi-Mahalleh research station in Gorgan as the disease hotspot under natural incidence over three years. The results showed that four genotypes including KC18638 an...

متن کامل

MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or 'mobile genome' (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate 'inferred contigs' produced by merging adjacent genes classified as 'pre...

متن کامل

MUTATION IN HOTSPOT REGIONS OF THE ERG11 GENE AND FLUCONAZOLE RESISTANCE IN CLINICAL ISOLATES OF CANDIDA ALBICANS IN RASHT CITY

Background & Aims: Nowadays, the common use of azoles has led to increased resistance to azole among Candida albicans strains. Amino acid substitutions in azole target enzyme, ERG11p, is attributed to azole resistance in some clinical strains of Candida albicans. The aim of this study was to evaluate ERG11 gene mutations in fluconazole-resistant isolates of Candida albicans in Rasht. Materials...

متن کامل

2005: an EPA odyssey.

MobilomeFINDER (http://mml.sjtu.edu.cn/Mobilome FINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘pr...

متن کامل

Bayesian multiple testing procedures for hotspot identification.

Ranking a group of candidate sites and selecting from it the high-risk locations or hotspots for detailed engineering study and countermeasure evaluation is the first step in a transport safety improvement program. Past studies have however mainly focused on the task of applying appropriate methods for ranking locations, with few focusing on the issue of how to define selection methods or thres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accident; analysis and prevention

دوره 42 2  شماره 

صفحات  -

تاریخ انتشار 2010